What Are Test and Train Periods And Hold Out Windows? (Facebook Decomp Example Part 1)
In the ever-evolving world of marketing, the ability to predict and analyze consumer behavior is crucial for success. Data modeling in marketing analytics has become an indispensable tool for understanding and influencing customer decisions. This blog post delves into the intricacies of data modeling, focusing on the challenges and strategies involved in creating effective predictive models.
Understanding the Holdout Window in Training Data
At the core of predictive modeling is the concept of a "holdout window" in training data. This term refers to the portion of data intentionally excluded from the initial model training phase. For instance, in a dataset, one might only utilize 80% to 90% for model training, holding out the remaining portion for testing. This approach could involve omitting a final month or chunking out periodic intervals, such as one week every eight. The primary goal here is to prevent overfitting, ensuring that the model can generalize well to unseen data.
When presenting models to clients, especially in marketing analytics, it's crucial to be prepared for their queries and concerns. Sophisticated clients, well-versed in marketing analytics, often express puzzlement over certain model outcomes, like higher training errors. It's essential to walk such clients through the concepts of training and testing phases, emphasizing that marketing models are more about following trends rather than predicting exact peaks and valleys.
The Role of Attribution Modeling
Attribution modeling is a significant aspect of marketing analytics. For example, understanding how much credit to assign to different marketing channels, like Facebook or Google, is vital. In cases where models attribute unusually high percentages to certain channels, it's crucial to be able to explain these results convincingly to clients. This aspect becomes even more complex when dealing with brand-heavy clients or e-commerce businesses, each having different benchmarks and expectations.
The addition of external factors like seasonality, economic variables, and holidays can dramatically refine a model's accuracy. For instance, including variables like trend, seasonality, and holidays can shift attributions significantly, redistributing credit from over-attributed channels like Facebook to these external factors. This adjustment often leads to a more realistic representation of the impact of different marketing initiatives.
A critical advancement in marketing modeling is the inclusion of auto-regressive terms. These terms use data from previous periods (like sales from past weeks) to predict current outcomes. This approach can unveil patterns and influences that traditional models might miss, offering a more nuanced understanding of customer behavior and marketing effectiveness.
Model Comparison and Qualified Opinions
The process of developing the most suitable model for a business scenario typically involves comparing multiple models. This comparison helps in identifying common patterns and understanding the variations caused by different inputs. The final model choice should balance technical accuracy with practical business application, forming a 'qualified opinion' based on comprehensive analysis. This approach ensures that the selected model aligns closely with the business's real-world dynamics and strategic objectives.
The journey through data modeling in marketing analytics is a complex but rewarding process. It requires a deep understanding of statistical methods, a keen awareness of the business context, and the ability to communicate effectively with clients. By carefully considering factors like the holdout window, client expectations, attribution modeling, external influences, and the use of advanced techniques like auto-regressive terms, analysts can develop models that not only predict consumer behavior but also align with and drive business strategies. Ultimately, the power of data modeling lies in its ability to transform vast datasets into actionable insights, guiding marketing decisions in an increasingly data-driven world.